Geometry Attention Transformer with position-aware LSTMs for image captioning

نویسندگان

چکیده

In recent years, Transformer structures have been widely applied in image captioning with impressive performance. However, previous works often neglect the geometry and position relations of different visual objects. These are thought as crucial information for good results. Aiming to further promote by Transformers, this paper proposes an improved Geometry Attention (GAT) framework. order obtain geometric representation ability, two novel geometry-aware architectures designed respectively encoder decoder our GAT i) a gate-controlled self-attention refiner, ii) group position-LSTMs. The first one explicitly incorporates relative spatial into representations encoding steps, second precisely informs word positions generating caption texts. extracted pretrained Faster-RCNN network. Our ablation study has proved that these optimization modules could efficiently improve performance captioning. experiment comparisons on datasets MS COCO Flickr30K, also show outperform current state-of-the-art models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Captioning with Attention

In the past few years, neural networks have fueled dramatic advances in image classi cation. Emboldened, researchers are looking for more challenging applications for computer vision and arti cial intelligence systems. They seek not only to assign numerical labels to input data, but to describe the world in human terms. Image and video captioning is among the most popular applications in this t...

متن کامل

Image Captioning using Visual Attention

This project aims at generating captions for images using neural language models. There has been a substantial increase in number of proposed models for image captioning task since neural language models and convolutional neural networks(CNN) became popular. Our project has its base on one of such works, which uses a variant of Recurrent neural network coupled with a CNN. We intend to enhance t...

متن کامل

Text-Guided Attention Model for Image Captioning

Visual attention plays an important role to understand images and demonstrates its effectiveness in generating natural language descriptions of images. On the other hand, recent studies show that language associated with an image can steer visual attention in the scene during our cognitive process. Inspired by this, we introduce a text-guided attention model for image captioning, which learns t...

متن کامل

Attention Correctness in Neural Image Captioning

Attention Map Visualization We visualize the attention maps of both the implicit attention model and our supervised attention model on the Flickr30k test set. As mentioned in the paper, 909 noun phrases are aligned for the implicit model and 901 for the supervised model. 635 of these alignments are common for both, and 595 of them have corresponding bounding boxes. Here we present a subset due ...

متن کامل

Social Image Captioning: Exploring Visual Attention and User Attention

Image captioning with a natural language has been an emerging trend. However, the social image, associated with a set of user-contributed tags, has been rarely investigated for a similar task. The user-contributed tags, which could reflect the user attention, have been neglected in conventional image captioning. Most existing image captioning models cannot be applied directly to social image ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2022

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2022.117174